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ABSTRACT: The study of mathematical modeling of the stability analysis of Lassa fever was examined. A mathematical model for 

the spread and control of Lassa fever was formulated and analyzed. The model incorporates a control parameter, the use of 

condom to control human to human transmission through sexual contact with opposite sex. The disease free and endemic 

equilibrium states were analyzed.  

KEYWORDS: Mathematical model, Ordinary differential equations, Stability, Laser Fever.  

 

1. INTRODUCTION 

Mathematical representation of disease parameters is a data reliant process and this prediction is often based on the 

implementation of mathematical models. The important feature is bridging the gap between mathematics (models) and the real 

world (data). In these models, the important features are theoretically developed but applied to real life scenarios represented by 

a given data. Such data may contain the signature of social effect, hence a comprehensive understanding of the phenomenon of 

disease involves a variety of mathematically tools, from model creation to the determination of solution to differential equation 

and to statistical analysis. 

Lassa virus is a member of the Arenaviridae, a family of single‐stranded RNA virus. This virus is an old world arenavirus which is 

enveloped, single‐stranded and bi‐segmented RNA. The natural reservoir of Lassa virus is multimammate Rat species known as 

mastomys natalensis which breed frequently and are distributed widely throughout West, Central and East Africa. They are the 

common rodents in Africa and they are found predominantly in rural areas and dwelling more often than surrounding country 

side. Member of this genus are infected persistently and shed the virus in their excrete and other bodily fluid throughout life. 

Sulaiman et al. (2018) investigated the transmission dynamics of the Lassa fever infection model with conclusion that the 

reproduction numbers in the humans are most sensitive to the transmission rates, recovery rates and the natural mortality rates 

of the humans, while the reproduction number in the rodents is most sensitive to the transmission rate, hunting/predation rate 

and the natural mortality rate of the rodents. The qualitative analysis of the study revealed that the disease becomes endemic in 

the rodents population and also do not die out of the human population over time without controlling the growth of the rodents 

population, preventing animal‐humans transmissions and improvement on the recovery rates of humans. 

Onuorah et al. (2016) studied the basic reproductive number for the spread and control of Lassa fever. In this research work, a 

mathematical model was developed and analyzed to study the transmission and control of Lassa fever. The model incorporate 

two control parameters, the use of rodenticide and condom. The disease free equilibrium points of the model were obtained and 

analyzed. They obtained an important threshold parameter called the basic reproductive number  𝑅0, as it was known that when 

𝑅0 <1 the disease dies out and when 𝑅0 >1 the disease persists in the population. 

Lanlege et al. (2018) studied measuring the spread and control of Lassa fever using the basic reproduction number  𝑅0. In this 

study, a mathematical model for the spread and control of Lassa fever was presented showing that the most effective strategy to 

curb the disease is the usage of condom. It was evaluated that as the compliance to the use of condom as a control measure 

increase, the reproduction number 𝑅0 decreases to less than one (𝑅0 < 1) which means that the disease is under control within 

the country and when the control measure is at lower rate or moderate rate then𝑅0, hence the disease is not under control within 

the country. 
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A mathematical model of the transmission dynamics of Lassa fever with separation of infected individual and treatment as control 

measures was studied by Nwasuka et al. (2019). The model assumes susceptible humans acquired the infection through 

interaction with the infected rodent populations. It was found that treatment is only given to separate human population. A 

threshold parameter called the effective reproduction number 𝑅𝑒𝑓𝑓 was obtained. The disease free equilibrium state was obtained 

and analyzed before the reproduction number was obtained. If 𝑅𝑒𝑓𝑓 < 1 the disease‐free equilibrium exists and it is locally and 

globally asymptotically stable, implying that Lassa fever can be controlled and eradicated within the population in a finite time 

and if the  

𝑅𝑒𝑓𝑓 > 1, the disease invade and become endemic in the population. 

A study by Eraikhueman et al. (2017) considered Lassa fever and its control measures. In their study, a mathematical model was 

used to investigate the dynamics of spread of Lassa fever in human population. The contributions from regular contact with the 

species of rodents that carry the virus that cause Lassa fever and infections, contract with persons suffering from the disease was 

examined to be significant in the spread of the disease. The paper gathered among several intervention measures, control of the 

rodents carrying the virus, isolation policy for persons infected with the virus and introducing vaccines to the human population 

are some of the best strategies against the spread of the disease. 

Obabiyi et al. (2017) discussed a mathematical model for Lassa fever transmission dynamics with variable human and reservoir 

population. Their study highlighted a compartmental modeling approach for two different populations: human and rodent with 

rigorous analysis. The analytical results showed the spread of Lassa fever can be effectively controlled in the population if the 

associated intervention strategies can make 𝑅0 less than 1  (𝑅0 < 1) . But if 𝑅0 > 1 the disease will persist in the population. The 

results of simulations reveal that increase in recovery rate contributes to decrease in the number of exposed and infectious human 

in the population and increase in the number of recovered human. The study concluded that early diagnostic of infected humans, 

maintaining hygienic environment, use of new needle when taking injection and interim control of the rodent carrying the virus 

are the best strategies against the spread of the disease. 

Akinwande et al. (2018) investigated a mathematical model for Lassa fever and sensitivity analysis. In this study, a mathematical 

model of five compartments was formulated. The disease free equilibrium point of the model was performed and the local and 

global stability was obtained and analyzed based on the reproduction number. The sensitivity analysis shows that the most 

sensitive parameters to the basic reproduction number 𝑅0 are the contact rate 𝛽 

Faniran (2017) investigated a mathematical modeling of Lassa fever dynamics with non‐drug compliance rate. The model 

incorporate a non‐drug compliance rate in the parameters for the human population. The basic reproduction number was derived 

and so also was the stability of the disease‐free and endemic equilibrium points analyzed. It was established that the disease‐free 

equilibrium is globally asymptotically stable when the reproduction, 𝑅0 < 1 and the disease always dies out. Also, the disease‐

free equilibrium point becomes unstable when 𝑅0 > 1, hence endemic equilibrium point is globally asymptotically stable. 

Sensitivity analysis of Lassa fever model by Onuorah et al. (2016), an extension of the proposed model by Onuorah and Akinwande 

was formulated by incorporating the sensitivity analysis. Sensitivity tells us how important each parameter is to disease 

transmission. Key to analysis was the reproduction number. Reasonable sets of values for the parameter in the model were 

compiled and sensitivity analysis around the baseline parameter value were computed, which shows that the most sensitive 

parameter to 𝑅0 is human birth rate, followed by condom efficacy and compliance. Obasi et al. estimated the basic reproduction 

of Lassa fever epidemics and its relationship with inter‐epidemic period. (2019). In this work, a realistic mathematical model that 

incorporate all the known transmission routes into Lassa fever epidemiology was presented. The basic reproduction number for 

the model 𝑅0, was derived and the inter‐epidemic period of infection disease was examined. From the result, it can be said that 

the inter‐epidemic period is useful to estimate the effect of intervention on Lassa fever incidence quantitatively. The paper 

highlighted the relationship between the Lassa fever basic reproduction and inter‐epidemic period of infection disease. Therefore, 

any policy or measures taken to reduce the basic reproduction number will definitely make the disease to take a very long time 

to re‐occur. 

Akinade et al. (2020) studied sensitivity and stability analysis of a Lassa fever disease model with control strategies. The research 

brought into limelight three control strategies which include; early diagnosis of the the infected human before onset of noticeable 

symptoms resulting in the treatment of the human‐carriers, vaccination of the susceptible humans and the use of rodenticide on 

the vector populations as effective means of limiting the spread of Lassa fever disease within an endemic population. An increase 

in the value of these three controls, yields a rapid and continuous decrease in the members of the carrier human, infected human 

and vector populations and eventually in the eradication of the disease from an endemic population. In this work, the recovered 

population experiences a continuous increase and no decrease in its size suggesting that these controls are very efficacious in 
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controlling the disease. The basic reproduction number was obtained, so also was the disease‐free equilibrium analyzed for 

stability. The sensitivity analysis results show the sensitiveness of each model parameter to the transmission of the disease and it 

was obtained that the rate at which the susceptible human population contracts the infection via contact with human‐carrier is 

the most sensitive parameter to the spread of the disease. 

Sensitivity analysis of multiple control intervention measures of Lassa fever disease model by Onah et al. (2019) was developed 

that incorporates the basic and important dynamics of Lassa fever disease transmission under the assumption of a homogeneously 

mixed population. The study extended the model by introducing various control intervention measures, like external protection, 

isolation, treatment and rodent control. Sensitivity analysis was carried out to investigate the impact of the control parameters 

on the persistence or eradication of Lassa fever disease. 

 

2. MODEL FORMULATION 

For the sake of clarity in this chapter, we assume a homogeneous mixing of the human and vector population such that there are 

equal chances of transmitting the virus when there is contact between susceptible human and active vector. Thus the total human 

population at time t denoted by N𝐻(t) is sub‐divided into four (4) and they are; susceptible male  S𝑀(t) , infected male  I𝑀(t) , 

susceptible female S𝐹(t) , infected female I𝐹(t) Hence: 

N𝐻(t) = S𝑀(t) + I𝑀(t) + S𝐹(t) + I𝐹(t) 

Similarly, the total vector population at timet, denoted by N𝑉(t) is sub‐divided into dormant vector D𝑉(t) and active vector  A𝑉(t) 

, such that 

N𝑉(t) = D𝑉(t) + A𝑉(t) 

The schematic diagram of the model is shown in fig 3.1. 

The dashed line from infected male I𝑀 to susceptible female S𝐹  shows that the infected male infects the susceptible female. This 

could be as a result of sexual interaction between the infected male and susceptible female. 

The line from infected female I𝐹  to susceptible male S𝑀  shows that the infected female infects the susceptible male. This also 

could be as a result of sexual interaction between the infected female and susceptible male. 

The dashed line also from active vector A𝑉 (carrier vector) to the susceptible male population S𝑀  shows the transfer of the virus 

from infected rodent to susceptible male. When susceptible male is exposed to the droppings of infected mastomy rats, they 

become infected. 

The dashed line from active vector A𝑉 (carrier vector) to the susceptible female population S𝐹  shows the transfer of the virus from 

infected rodent to susceptible female. That is, susceptible female become infected with Lassa fever virus from exposure to the 

droppings of infected mastomy rats. 

The susceptible male population S𝑀(t) is generated through male birth at the rate 𝛽𝐻𝜃N𝐻 where 0 < 𝜃 < 1. 

The dormant vector D𝑉 population is generated through natural birth rate by active vector A𝑉 denoted by 𝛽𝑅N𝑉 and is reduced 

by progression to active vector (A𝑉) population due to maturity at the rate 𝜎, natural death at the rate 𝜇2 and death due to 

application of pesticide at the rate 𝛿2 Males who recovered from the infection at the rate 𝛾 is at the other hand reduced by 

natural death at the rate 𝜇1 , interaction with infected female I𝐹  and active vector A𝑉, which results to the force of infection. 

i. e;
(𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉)𝑆𝑀

𝑁𝐻
 , where 

C2 is the average sexual partners acquired by susceptible male S𝑀  

𝛼1 is the probability of transmission of infection resulting from sexual interaction between infected infected female and 

susceptible male. 

The factor (1 − 𝜀𝜏) is the effect of condom usage by susceptible male S𝑀. 

𝛼3 is the probability of transmission of infection when there is interaction between Active Vector and Susceptible male. 

The infected male population 𝐼𝑀(𝑡) is generated by sexual interaction with infected female 𝐼𝐹(𝑡) and interaction with Active 

Vector 𝐴𝑉(𝑡) i.e 
(𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉)𝑆𝑀

𝑁𝐻
. 

It is decreased by natural death at the rate 𝜇1 , death due to infection at the rate 𝛿1 and recovery of infected male 𝐼𝑀  as a result 

of treatment at the rate 𝛾. The Susceptible female 𝑆𝐹(𝑡) population is generated through female birth at the rate 𝛽𝐻(1 − 𝜃)𝑁𝐻 

where      

 0 < 𝜃 < 1. It is increased by recovered infected female at the rate 𝛾. It is on the other hand reduced by natural death at the rate 

𝜇1 and interaction with infected male 𝐼𝑀  and Active Vector 𝐴𝑉 which results to the force of infection 
(𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉)𝑆𝐹

𝑁𝐻
 where 

𝐶1 is the average sexual partners acquired by susceptible females. 
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𝛼2 is the probability of transmission of infection when there is interaction between infected male 𝐼𝑀  and Susceptible female. 

The factor (1 − 𝜏𝜀) is the effect of condom usage by Susceptible female. 

𝛼4 is the probability of transmission of infection when there is interaction between Active Vector and Susceptible female. 

The infected female 𝐼𝐹(𝑡) population is generated by sexual interaction with infected male 𝐼𝑀  and interaction with Active Vector 

𝐴𝑉 i.e 
(𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉)𝑆𝐹

𝑁𝐻
. It is decreased by natural death at the rate  𝜇1 , death due to infection at the rate 𝛿1 and recovery of infected 

female 𝐼𝐹  as a result of treatment at the rate 𝛾. 

   
                               Figure𝟑. 𝟏: Schematic Diagram of the Mathematical model for the Lassa Fever Transmission. 

 

3. MODEL ASSUMPTIONS 

We assumed that: 

1. New births are Susceptible 

2.  Virus does not kill the reservoir host. I.e. their death can be natural or accidental. 

3.  Vector class is divided into two; Active Vector 𝐴𝑉 and Dormant Vector 𝐷𝑉  

 

𝟒.MODEL EQUATIONS 

Considering the above assumptions, definition of variables and parameters and relationship between the variables and 

parameters described in the schematic diagram, we developed six (6) ordinary differential equations for the causes, spread and 

control of Lassa fever in a population. The differential equations are given as the following; 
𝑑𝑆𝑀

𝑑𝑇
= 𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀 −

(𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉)𝑆𝑀

𝑁𝐻
− 𝜇1𝑆𝑀.                                                  (3.1) 

 
𝑑𝐼𝑀

𝑑𝑇
=

(𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉)𝑆𝑀

𝑁𝐻
− (𝜇1 + 𝛿1 + 𝛾)𝐼𝑀   .                                                           (3.2) 

 
𝑑𝑆𝐹

𝑑𝑇
= 𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹 −

(𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉)𝑆𝐹

𝑁𝐻
− 𝜇1𝑆𝐹                                         (3.3) 

 
𝑑𝐼𝐹

𝑑𝑇
=

(𝐶1𝛼2(1−∈𝜏)𝐼𝑀+𝛼4𝐴𝑉)𝑆𝐹

𝑁𝐻
− (𝜇1 + 𝛿1 + 𝛾)𝐼𝐹                                                               (3.4) 

 
𝑑𝐷𝑉

𝑑𝑇
= 𝛽𝑉𝑁𝑉 − (𝜎 + 𝜇2 + 𝛿2)𝐷𝑉                                                                                        (3.5) 
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𝑑𝐴𝑉

𝑑𝑇
= 𝜎𝐷𝑉 − (𝜇2 + 𝛿2)𝐴𝑉                                                                                                 (3.6) 

 

Where 

𝑺𝑴(𝒕) Number of susceptible male at time 𝐭 

𝑰𝑴(𝒕) Number of Infected male at time 𝐭 

𝑺𝑭(𝒕) Number of susceptible female at time 𝐭 

𝑰𝑭(𝒕) Number of Infected female at time 𝐭 

𝑫𝑽(𝒕) Number of dormant vector at time 𝐭 

𝑨𝑽(𝒕) Number of active vector at time 𝐭 

 

𝛽𝐻 The natural birth rate of Human population 

𝛽𝑉 The natural birth rate of Vectors 

𝜃 The proportion of Human birth that is male (0 < 𝜃 <  1) 

𝛼1 The probability of transmission of infection resulting from 

sexual interaction between infected female and susceptible 

male 

𝛼2 The probability of transmission of infection resulting from 

sexual interaction between infected male and susceptible 

female 

𝛼3 The probability of transmission of infection resulting from 

interaction between active vectors and susceptible male 

𝛼4 The probability of transmission of infection resulting from 

interaction between active vectors and susceptible female 

𝑐1 Average number of male partners acquired by a susceptible 

female 

𝑐2 Average number of male partners acquired by a susceptible 

male 

𝜇1 Natural death rate of Human population 

𝜇2 Natural death rate of vector population 

𝜎 Progression rate from dormant to active vector 

𝛿1 Death rate of Human population due to infection 

𝛿2 Death rate of vector population due to application of pesticide 

𝛾 Recovery rate of infected Human 

𝜀 Efficacy of condom 

𝜏 Compliance of condom usage 

From the above model equations, by adding equations (1)‐-(4) we can derive the rate of change of the total Human population. 

Thus; 

𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀 −
(𝐶2𝛼1(1 − 𝜀𝜏)𝐼𝐹 + 𝛼3𝐴𝑉)𝑆𝑀

𝑁𝐻
− 𝜇1𝑆𝑀 +

(𝐶2𝛼1(1 − 𝜀𝜏)𝐼𝐹 + 𝛼3𝐴𝑉)𝑆𝑀
𝑁𝐻

− (𝜇1 + 𝛿1 + 𝛾)𝐼𝑀 + 𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹

−
(𝐶1𝛼2(1 − 𝜀𝜏)𝐼𝑀 + 𝛼4𝐴𝑉)𝑆𝐹

𝑁𝐻
− 𝜇1𝑆𝐹 +

(𝐶1𝛼2(1 − 𝜀𝜏)𝐼𝑀 + 𝛼4𝐴𝑉)𝑆𝐹
𝑁𝐻

− (𝜇1 + 𝛿1 + 𝛾)𝐼𝐹  

 = 𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀 − 𝜇1𝑆𝑀 − (𝜇1 + 𝛿1 + 𝛾)𝐼𝑀 + 𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹 − 𝜇1𝑆𝐹 − (𝜇1 + 𝛿1 + 𝛾)𝐼𝐹  

 = 𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀 − 𝜇1𝑆𝑀 − (𝜇1 + 𝛿1)𝐼𝑀 − 𝛾𝐼𝑀 + 𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹 − 𝜇1𝑆𝐹 − (𝜇1 + 𝛿1)𝐼𝐹 − 𝛾𝐼𝐹                       

= 𝛽𝐻𝜃𝑁𝐻 − 𝜇1𝑆𝑀 − (𝜇1 + 𝛿1)𝐼𝑀 + 𝛽𝐻(1 − 𝜃)𝑁𝐻 − 𝜇1𝑆𝐹 − (𝜇1 + 𝛿1)𝐼𝐹                                                  = 𝛽𝐻𝜃𝑁𝐻 − 𝜇1𝑆𝑀 − 𝜇1𝐼𝑀 −

𝛿1𝐼𝑀 + 𝛽𝐻𝑁𝐻 − 𝛽𝐻𝜃𝑁𝐻 − 𝜇1𝑆𝐹 − 𝜇1𝐼𝐹 − 𝛿1𝐼𝐹                                             = 𝛽𝐻𝑁𝐻 − 𝜇1𝑆𝑀 − 𝜇1𝐼𝑀 − 𝜇1𝑆𝐹 − 𝜇1𝐼𝐹 − 𝛿1𝐼𝑀 − 𝛿1𝐼𝐹  

=𝛽𝐻𝑁𝐻 − 𝜇1(𝑆𝑀 + 𝐼𝑀 + 𝑆𝐹 + 𝐼𝐹) − 𝛿1(𝐼𝑀 + 𝐼𝐹) 

Recall that 

𝑁𝐻 = 𝑆𝑀 + 𝐼𝑀 + 𝑆𝐹 + 𝐼𝐹  

Hence; 

𝛽𝐻𝑁𝐻 − 𝜇1𝑁𝐻 − 𝛿1(𝐼𝑀 + 𝐼𝐹) 

Hence, the rate of change of the total human population is 
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𝑑𝑁𝐻

𝑑𝑇
= 𝛽𝐻𝑁𝐻 − 𝜇1𝑁𝐻 − 𝛿1(𝐼𝑀 + 𝐼𝐹)                                                                       (3.7) 

Also by adding equations (5)−(6) , we can derive the rate of change of the total vector population. Thus; 

 = 𝛽𝑉𝑁𝑉 − (𝜎 + 𝜇2 + 𝛿2)𝐷𝑉 + 𝜎𝐷𝑉 − (𝜇2 + 𝛿2)𝐴𝑉 

 = 𝛽𝑉𝑁𝑉 − 𝜎𝐷𝑉 − 𝜇2𝐷𝑉 − 𝛿2𝐷𝑉 + 𝜎𝐷𝑉 − 𝜇2𝐴𝑉 − 𝛿2𝐴𝑉 

 = 𝛽𝑉𝑁𝑉 − 𝜇2𝐷𝑉 − 𝛿2𝐷𝑉 − 𝜇2𝐴𝑉 − 𝛿2𝐴𝑉 

 = 𝛽𝑉𝑁𝑉 − 𝐷𝑉(𝜇2 + 𝛿2) − 𝐴𝑉(𝜇2 + 𝛿2) 

 = 𝛽𝑉𝑁𝑉 − (𝜇2 + 𝛿2)(𝐷𝑉 + 𝐴𝑉) 

Recall that 𝑁𝑉 = 𝐷𝑉 + 𝐴𝑉  

Hence; = 𝛽𝑉𝑁𝑉 − (𝜇2 + 𝛿2)𝑁𝑉  

Therefore the rate of change of the total vector population is 
𝑑𝑁𝑉

𝑑𝑇
= 𝛽𝑉𝑁𝑉 − (𝜇2 + 𝛿2)𝑁𝑉                                                                                (3.8) 

 

𝟓. EQUILIBRIUM STATE 

Using the dictionary definition of equilibrium, we know it to be a state of balance. But with respect to this chapter, we will narrow 

down the definition as, at equilibrium state, the rate of change must be equal to zero (0). i.e. 

𝑑𝑆𝑀
𝑑𝑇

=
𝑑𝐼𝑀
𝑑𝑇

=
𝑑𝑆𝐹
𝑑𝑇

=
𝑑𝐼𝐹
𝑑𝑇

=
𝑑𝐷𝑉
𝑑𝑇

=
𝑑𝐴𝑉
𝑑𝑇

= 0 

We let; 

(𝑆𝑀 , 𝐼𝑀 , 𝑆𝐹 , 𝐼𝐹 , 𝐷𝑉 , 𝐴𝑉) = (𝑋, Y, 𝑍, 𝑈, 𝑉,𝑊) 

 

𝟔. DISEASE‐FREE EQUILIBRIUM STATE 

     From the name, we derive the definition. It is a state in which a disease does not exist. So from this we have that the classes 

where the disease does not exist equals zero (0) i.e. at the disease‐free equilibrium state; 

𝐼𝑀 = 𝐼𝐹 = 𝐷𝑉 = 𝐴𝑉 = 0                                                               (3.9) 

Substitute equation (3.9) into equation (3.1) 

𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀 −
(𝐶2𝛼1(1 − 𝜀𝜏)𝐼𝐹 + 𝛼3𝐴𝑉)𝑆𝑀

𝑁𝐻
− 𝜇1𝑆𝑀 = 0 

𝛽𝐻𝜃𝑁𝐻 + 𝛾(0) −
(𝐶2𝛼1(1 − 𝜀𝜏)(0) + 𝛼3(0))𝑆𝑀

𝑁𝐻
− 𝜇1𝑆𝑀 = 0 

𝛽𝐻𝜃𝑁𝐻 − 𝜇1𝑆𝑀 = 0 ⇒ 𝜇1𝑆𝑀 = 𝛽𝐻𝜃𝑁𝐻 

Making 𝑆𝑀  subject formulae 

𝑆𝑀 =
𝛽𝐻𝜃𝑁𝐻

𝜇1
                                                                                  (3.10) 

Also substituting equation (3.9) into equation (3.3) 

𝑑𝑆𝐹
𝑑𝑇

= 𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹 −
(𝐶1𝛼2(1 − 𝜀𝜏)𝐼𝑀 + 𝛼4𝐴𝑉)𝑆𝐹

𝑁𝐻
− 𝜇1𝑆𝐹  

𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹 −
(𝐶1𝛼2(1 − 𝜀𝜏)𝐼𝑀 + 𝛼4𝐴𝑉)𝑆𝐹

𝑁𝐻
− 𝜇1𝑆𝐹 = 0 

𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾(0) −
(𝐶1𝛼2(1 − 𝜀𝜏)(0) + 𝛼4(0))𝑆𝐹

𝑁𝐻
− 𝜇1𝑆𝐹 = 0 

𝛽𝐻(1 − 𝜃)𝑁𝐻 − 𝜇1𝑆𝐹 = 0 ⇒ 𝜇1𝑆𝐹 = 𝛽𝐻(1 − 𝜃)𝑁𝐻 

𝑆𝐹 =
𝛽𝐻(1−𝜃)𝑁𝐻

𝜇1
                                                                         (3.11) 

Where 

(𝑆𝑀 , 𝐼𝑀 , 𝑆𝐹 , 𝐼𝐹 , 𝐷𝑉 , 𝐴𝑉) = (𝑋, Y, 𝑍, 𝑈, 𝑉,𝑊) 

Hence the disease free equilibrium (DFE) state is 

𝐸0 = (𝑋, Y, 𝑍, 𝑈, 𝑉,𝑊) = [
𝛽𝐻𝜃𝑁𝐻

𝜇1
, 0,

𝛽𝐻𝐻(1−𝜃)𝑁𝐻

𝜇1
, 0,0,0]                                (3.12) 

 

 

𝟕. ENDEMIC EQUILIBRIUM STATE 

In the endemic state, the disease exists for every class in the population. That is the endemic equilibrium state is the state where 

the disease cannot be totally eradicated but remains in the population. Hence; 
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𝐼𝑀 = 𝐼𝐹 = 𝐷𝑉 = 𝐴𝑉 ≠ 0 

To obtain the number of susceptible male 𝑆𝑀  at the endemic equilibrium state, we solve 

 equation (3.2) 

𝑑𝐼𝑀
𝑑𝑇

=
(𝐶2𝛼1(1 − 𝜀𝜏)𝐼𝐹 + 𝛼3𝐴𝑉)𝑆𝑀

𝑁𝐻
− (𝜇1 + 𝛿1 + 𝛾)𝐼𝑀  

0 =
(𝐶2𝛼1(1 − 𝜀𝜏)𝐼𝐹 + 𝛼3𝐴𝑉)𝑆𝑀

𝑁𝐻
− (𝜇1 + 𝛿1 + 𝛾)𝐼𝑀 

(𝐶2𝛼1(1 − 𝜀𝜏)𝐼𝐹 + 𝛼3𝐴𝑉)𝑆𝑀
𝑁𝐻

= (𝜇1 + 𝛿1 + 𝛾)𝐼𝑀  

𝑆𝑀 =
𝑁𝐻(𝜇1+𝛿1+𝛾)𝐼𝑀

(𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉)
=

𝑁𝐻(𝜇1+𝛿1+𝛾)𝐼𝑀

𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉
                                 (3.13) 

To obtain the number of infected male 𝐼𝑀  at the endemic equilibrium state, we solve equation (1) 

𝑑𝑆𝑀
𝑑𝑇

= 𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀 −
(𝐶2𝛼1(1 − 𝜀𝜏)𝐼𝐹 + 𝛼3𝐴𝑉)𝑆𝑀

𝑁𝐻
− 𝜇1𝑆𝑀 . 

0 = 𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀 −
(𝐶2𝛼1(1 − 𝜀𝜏)𝐼𝐹 + 𝛼3𝐴𝑉)𝑆𝑀

𝑁𝐻
− 𝜇1𝑆𝑀. 

𝑆𝑀 [
𝐶2𝛼1(1 − 𝜀𝜏)𝐼𝐹 + 𝛼3𝐴𝑉

𝑁𝐻
+ 𝜇1] = 𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀  

𝑆𝑀 [
𝐶2𝛼1(1 − 𝜀𝜏)𝐼𝐹 + 𝛼3𝐴𝑉 +𝑁𝐻𝜇1

𝑁𝐻
] = 𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀  

 

Multiply both side by 
𝑁𝐻

𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉+𝑁𝐻𝜇1
 

𝑆𝑀 =
𝑁𝐻(𝛽𝐻𝜃𝑁𝐻+𝛾𝐼𝑀)

𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉+𝑁𝐻𝜇1
                                                (3.14) 

 

Substituting equation (3.13) into (3.14) 

𝑁𝐻(𝜇1 + 𝛿1 + 𝛾)𝐼𝑀
𝐶2𝛼1(1 − 𝜀𝜏)𝐼𝐹 + 𝛼3𝐴𝑉

=
𝑁𝐻(𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀)

𝐶2𝛼1(1 − 𝜉𝑗𝜏)𝐼𝐹 + 𝛼3𝐴𝑉 + 𝑁𝐻𝜇1
 

(𝜇1 + 𝛿1 + 𝛾)𝐼𝑀
𝐶2𝛼1(1 − 𝜀𝜏)𝐼𝐹 + 𝛼3𝐴𝑉

=
(𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀)

𝐶2𝛼1(1 − 𝜀𝜏)𝐼𝐹 + 𝛼3𝐴𝑉 + 𝑁𝐻𝜇1
 

Let 𝐶2𝛼1(1 − 𝜀𝜏) = 𝑃 and (𝜇1 + 𝛿1 + 𝛾) = 𝐴 

Thus; 

𝐴𝐼𝑀
𝑃𝐼𝐹 + 𝛼3𝐴𝑉

=
𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀

𝑃𝐼𝐹 + 𝛼3𝐴𝑉 + 𝑁𝐻 + 𝜇1
 

𝐴𝐼𝑀(𝑃𝐼𝐹 + 𝛼3𝐴𝑉 + 𝑁𝐻𝜇1) = (𝑃𝐼𝐹 + 𝛼3𝐴𝑉)(𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀) 

𝐴𝐼𝑀𝑃𝐼𝐹 + 𝐴𝐼𝑀𝛼3𝐴𝑉 + 𝐴𝐼𝑀𝑁𝐻𝜇1 = 𝑃𝐼𝐹𝛽𝐻𝜃𝑁𝐻 + 𝑃𝐼𝐹𝛾𝐼𝑀 + 𝛼3𝐴𝑉𝐻𝛽𝐻𝜃𝑁𝐻 + 𝛼3𝐴𝑉𝛾𝐼𝑀  

Collect like terms 

𝐴𝐼𝑀𝑃𝐼𝐹 + 𝐴𝐼𝑀𝛼3𝐴𝑉 + 𝐴𝐼𝑀𝑁𝐻𝜇1 − 𝑃𝐼𝐹𝛾𝐼𝑀 − 𝛼3𝐴𝑉𝛾𝐼𝑀 = 𝑃𝐼𝐹𝛽𝐻𝜃𝑁𝐻 + 𝛼3𝐴𝑉𝛽𝐻𝜃𝑁𝐻 

𝐼𝑀(𝑃𝐴𝐼𝐹 + 𝐴𝛼3𝐴𝑉 + 𝐴𝑁𝐻𝜇1 − 𝑃𝐼𝐹𝛾 − 𝛼3𝐴𝑉𝛾) = 𝑃𝐼𝐹𝛽𝐻𝜃𝑁𝐻 + 𝛼3𝐴𝑉𝛽𝐻𝜃𝑁𝐻 

𝐼𝑀 =
𝑃𝐼𝐹𝛽𝐻𝜃𝑁𝐻 + 𝛼3𝐴𝑉𝛽𝐻𝜃𝑁𝐻

𝑃𝐴𝐼𝐹 + 𝐴𝛼3𝐴𝑉 + 𝐴𝑁𝐻𝜇1 − 𝑃𝐼𝐹𝛾 − 𝛼3𝐴𝑉𝛾
 

Thus 

𝐼𝑀 =
𝛽𝐻𝜃𝑁𝐻[𝐶2𝛼1(1−∈𝜏)𝐼𝐹+𝛼3𝐴𝑉]

(𝜇1+𝛿1+𝛾)[𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉+𝑁𝐻𝜇1]−𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹𝛾−𝛼3𝐴𝑉𝛾
              (3.15) 

To solve for the number of susceptible female 𝑆𝐹  at the endemic equilibrium state, we solve equation (4) 

𝑑𝐼𝐹
𝑑𝑇

=
(𝐶1𝛼2(1 − 𝜀𝜏)𝐼𝑀 + 𝛼4𝐴𝑉)𝑆𝐹

𝑁𝐻
− (𝜇1 + 𝛿1 + 𝛾)𝐼𝐹  

0 =
(𝐶1𝛼2(1 − 𝜀𝜏)𝐼𝑀 + 𝛼4𝐴𝑉)𝑆𝐹

𝑁𝐻
− (𝜇1 + 𝛿1 + 𝛾)𝐼𝐹  

(𝐶1𝛼2(1 − 𝜀𝜏)𝐼𝑀 + 𝛼4𝐴𝑉)𝑆𝐹
𝑁𝐻

= (𝜇1 + 𝛿1 + 𝛾)𝐼𝐹  

𝑆𝐹 =
𝑁𝐻(𝜇1+𝛿1+𝛾)𝐼𝐹

𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉
                                                                  (3.16) 

To solve for the number of infected female 𝐼𝐹  at the endemic equilibrium state, we solve 
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 Equation (3.3) 

𝑑𝑆𝐹
𝑑𝑇

= 𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹 −
(𝐶1𝛼2(1 − 𝜉𝑗𝜏)𝐼𝑀 + 𝛼4𝐴𝑉)𝑆𝐹

𝑁𝐻
− 𝜇1𝑆𝐹  

0 = 𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹 −
(𝐶1𝛼2(1−∈ 𝜏)𝐼𝑀 + 𝛼4𝐴𝑉)𝑆𝐹

𝑁𝐻
− 𝜇1𝑆𝐹  

𝑆𝐹 [
𝐶1𝛼2(1 − 𝜀𝜏)𝐼𝑀 + 𝛼4𝐴𝑉

𝑁𝐻
+ 𝜇1] = 𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹  

𝑆𝐹 =
𝑁𝐻[𝛽𝐻(1−𝜃)𝑁𝐻+𝛾𝐼𝐹]

𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉+𝑁𝐻𝜇1
                                                                (3.17) 

Substituting equation (3.16) into (3.17) 

𝑁𝐻(𝜇1 + 𝛿1 + 𝛾)𝐼𝐹
𝐶1𝛼2(1 − 𝜀𝜏)𝐼𝑀 + 𝛼4𝐴𝑉

=
𝑁𝐻[𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹]

𝐶1𝛼2(1 − 𝜀𝜏)𝐼𝑀 + 𝛼4𝐴𝑉 + 𝑁𝐻𝜇1
 

(𝜇1 + 𝛿1 + 𝛾)𝐼𝐹
𝐶1𝛼2(1 − 𝜉𝑗𝜏)𝐼𝑀 + 𝛼4𝐴𝑉

=
[𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹]

𝐶1𝛼2(1 − 𝜉𝑗𝜏)𝐼𝑀 + 𝛼4𝐴𝑉 + 𝑁𝐻𝜇1
 

Let 𝐶2𝛼2(1 − 𝜀𝜏) = 𝑞 and let (𝜇1 + 𝛿1 + 𝛾) = 𝐴 

Thus 

𝐴𝐼𝐹
𝑞𝐼𝑀 + 𝛼4𝐴𝑉

=
𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹
𝑞𝐼𝑀 + 𝛼4𝐴𝑉 +𝑁𝐻𝜇1

 

𝐴𝐼𝐹(𝑞𝐼𝑀 + 𝛼4𝐴𝑉 + 𝑁𝐻𝜇1) = (𝑞𝐼𝑀 + 𝛼4𝐴𝑉𝐻)(𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹) 

𝐴𝐼𝐹(𝑞𝐼𝑀 + 𝛼4𝐴𝑉 +𝑁𝐻𝜇1) = 𝑞𝐼𝑀𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝑞𝐼𝑀𝛾𝐼𝐹 + 𝛼4𝐴𝑉𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛼4𝐴𝑉𝛾𝐼𝐹  

𝐴𝐼𝐹(𝑞𝐼𝑀 + 𝛼4𝐴𝑉 + 𝑁𝐻𝜇1) = 𝛽𝐻(1 − 𝜃)𝑁𝐻(𝑞𝐼𝑀 + 𝛼4𝐴𝑉) + 𝐼𝐹(𝑞𝐼𝑀𝛾 + 𝛼4𝐴𝑉𝛾) 

Collect like terms 

𝐼𝐹(𝑞𝐼𝑀 + 𝛼4𝐴𝑉 +𝑁𝐻𝜇1)𝐴 − 𝐼𝐹(𝑞𝐼𝑀𝛾 + 𝛼4𝐴𝑉𝛾) = 𝛽𝐻(1 − 𝜃)𝑁𝐻(𝑞𝐼𝑀 + 𝛼4𝐴𝑉) 

𝐼𝐹[(𝑞𝐼𝑀 + 𝛼4𝐴𝑉 + 𝑁𝐻𝜇1)𝐴 − (𝑞𝐼𝑀𝛾 + 𝛼4𝐴𝑉𝛾)] = 𝛽𝐻(1 − 𝜃)𝑁𝐻(𝑞𝐼𝑀 + 𝛼4𝐴𝑉) 

𝐼𝐹 =
𝛽𝐻(1 − 𝜃)𝑁𝐻(𝑞𝐼𝑀 + 𝛼4𝐴𝑉)

(𝑞𝐼𝑀 + 𝛼4𝐴𝑉 + 𝑁𝐻𝜇1)𝐴 − (𝑞𝐼𝑀𝛾 + 𝛼4𝐴𝑉𝛾)
 

 

Thus 

𝐼𝐹  = 
𝛽𝐻(1−𝜃)𝑁𝐻(𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉)

[𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉+𝑁𝐻𝜇1](𝜇1+𝛿1+𝛾)−(𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀𝛾+𝛼4𝐴𝑉𝛾)
               (3.18) 

Similarly for the vector population, we solve equation (5) and (6) 

 From equation (5) 

𝑑𝐷𝑉
𝑑𝑇

= 𝛽𝑉𝑁𝑉 − (𝜎 + 𝜇2 + 𝛿2)𝐷𝑉  

0 = 𝛽𝑉𝑁𝑉 − (𝜎 + 𝜇2 + &)𝐷𝑉  

(𝜎 + 𝜇2 + &)𝐷𝑉 = 𝛽𝑉𝑁𝑉 

𝐷𝑉 =
𝛽𝑉𝑁𝑉

𝜎+𝜇2+𝛿2
                                                      (3.19) 

Also from equation (6) 

𝑑𝐴𝑉
𝑑𝑇

= 𝜎𝐷𝑉 − (𝜇2 + &)𝐴𝑉 

0 = 𝜎𝐷𝑉 − (𝜇2 + 𝛿2)𝐴𝑉 

𝜎𝐷𝑉 = (𝜇2 + 𝛿2)𝐴𝑉 

𝐴𝑉 =
𝜎𝐷𝑉

𝜇2+𝛿2
                                                                             (3.20) 

So the endemic equilibrium state is given by 

𝐸0 = (𝑋, Y, 𝑍, 𝑈, 𝑉,𝑊) =
𝑁𝐻(𝜇1+𝛿1+𝛾)𝐼𝑀

𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉
,                                        (3.21) 

𝛽𝐻𝜃𝑁𝐻[𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉]

(𝜇1+𝛿1+𝛾)[𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉+𝑁𝐻𝜇1]−𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹𝛾−𝛼3𝐴𝑉𝛾
,                      (3.22) 

𝑁𝐻(𝜇1+𝛿1+𝛾)𝐼𝐹

𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉
,                                                                                       (3.23) 

𝛽𝐻(1−𝜃)𝑁𝐻(𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉)

[𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉+𝑁𝐻𝜇1](𝜇1+𝛿1+𝛾)−(𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀𝛾+𝛼4𝐴𝑉𝛾)
,                   (3.24) 

𝛽𝑉𝑁𝑉

𝜎+𝜇2+𝛿2
,                                                                                                        (3.25) 

𝜎𝐷𝑉

𝜇2+𝛿2
                                                                                                                (3.26) 
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STABILITY ANALYSIS FOR THE EQUILIBRIUM STATE 

We refer to an equilibrium as being stable if the real parts of the eigenvalues of the Jacobian at the equilibrium are negative. An 

equilibrium is unstable if at least one of the eigenvalues of the Jacobian at that point is positive. In other to obtain the Eigenvalues 

to check for the stability of the system, we carryout standard linearization of the system by letting the functions 𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 

𝐹6 to represent equations (1) −(6) respectively as follows 

𝐹1 = 𝛽𝐻𝜃𝑁𝐻 + 𝛾𝐼𝑀 −
(𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉)𝑆𝑀

𝑁𝐻
− 𝜇1𝑆𝑀                                         (3.27) 

𝐹2 =
(𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉)𝑆𝑀

𝑁𝐻
− (𝜇1 + 𝛿1 + 𝛾)𝐼𝑀                                                  (3.28) 

𝐹3 = 𝛽𝐻(1 − 𝜃)𝑁𝐻 + 𝛾𝐼𝐹 −
(𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉)𝑆𝐹

𝑁𝐻
− 𝜇1𝑆𝐹                                (3.29) 

𝐹4 =
(𝐶1𝛼2(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉)𝑆𝐹

𝑁𝐻
− (𝜇1 + 𝛿1 + 𝛾)𝐼𝐹                                                     (3.30) 

𝐹5 = 𝛽𝑉𝑁𝑉 − (𝜎 + 𝜇2 + 𝛿2)𝐷𝑉                                                                              (3.31) 

𝐹6 = 𝜎𝐷𝑉 − (𝜇2 + 𝛿2)𝐴𝑉                                                                                        (3.32) 

We differentiate equations (3.27) − (3.32) partially with respect to 𝑆𝑀, 𝐼𝑀 , 𝑆𝐹 , 𝐼𝐹 , 𝐷𝑉  and 𝐴𝑉 and also putting it in mind that at 

disease free equilibrium, 

𝐼𝑀 = 𝐼𝐹 = 𝐷𝑉 = 𝐴𝑉 = 0 

Hence; 

𝐽11 =
𝜕𝐹1

𝜕𝑆𝑀
= −

(𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉)

𝑁𝐻
− 𝜇1                              𝐽21 =

𝜕𝐹2

𝜕𝑆𝑀
=

(𝐶2𝛼1(1−𝜀𝜏)𝐼𝐹+𝛼3𝐴𝑉)

𝑁𝐻
 

𝐽11(𝐼𝐹 = 0, 𝐴𝑉 = 0) =
𝜕𝐹1

𝜕𝑆𝑀
= −𝜇1                                      𝐽21(𝐼𝐹 = 0, 𝐴𝑉 = 0) =

𝜕𝐹2

𝜕𝑆𝑀
= 0 

𝐽31 =
𝜕𝐹3

𝜕𝑆𝑀
= 0                  𝐽41 =

𝜕𝐹4

𝜕𝑆𝑀
= 0                  𝐽51 =

𝜕𝐹5

𝜕𝑆𝑀
= 0                 𝐽61 =

𝜕𝐹6

𝜕𝑆𝑀
= 0 

 

𝐽12 =
𝜕𝐹1

𝜕𝐼𝑀
= 𝛾                                                            𝐽22 =

𝜕𝐹2

𝜕𝐼𝑀
= −(𝜇1 + 𝛿1 + 𝛾) = −𝐴1 

𝐽32 =
𝜕𝐹3

𝜕𝐼𝑀
= −

𝐶1𝛼2(1−𝜀𝜏)𝑆𝐹

𝑁𝐻
= −

𝑞𝑍

𝑁𝐻
                 𝐽42 =

𝜕𝐹4

𝜕𝐼𝑀
=

𝐶2𝛼2(1−𝜀𝜏)𝑆𝐹

𝑁𝐻
=

𝑞𝑍

𝑁𝐻
 

𝐽52 =
𝜕𝐹5

𝜕𝐼𝑀
= 0                 𝐽62 =

𝜕𝐹6

𝜕𝐼𝑀
= 0 

 

𝐽13 =
𝜕𝐹1

𝜕𝑆𝐹
= 0                        𝐽23 =

𝜕𝐹2

𝜕𝑆𝐹
= 0 

𝐽33 =
𝜕𝐹3

𝜕𝑆𝐹
= −

(𝐶2𝛼1(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉)

𝑁𝐻
− 𝜇1                                 𝐽43 =

𝜕𝐹4

𝜕𝑆𝐹
=

(𝐶2𝛼1(1−𝜀𝜏)𝐼𝑀+𝛼4𝐴𝑉)

𝑁𝐻
 

𝐽33(𝐼𝑀 = 0, 𝐴𝑉 = 0) =
𝜕𝐹3

𝜕𝑆𝐹
= −𝜇1                                          𝐽43(𝐼𝑀 = 0, 𝐴𝑉 = 0) =

𝜕𝐹4

𝜕𝑆𝐹
= 0 

𝐽53 =
𝜕𝐹5

𝜕𝑆𝐹
= 0               𝐽63 =

𝜕𝐹6

𝜕𝑆𝐹
= 0 

 

𝐽14 =
𝜕𝐹1

𝜕𝐼𝐹
= −

𝐶2𝛼1(1−𝜀𝜏)𝑆𝑀

𝑁𝐻
= −

𝑝𝑋

𝑁𝐻
                     𝐽24 =

𝜕𝐹2

𝜕𝐼𝐹
=

𝐶2𝛼1(1−𝜀𝜏)𝑆𝑀

𝑁𝐻
=

𝑝𝑋

𝑁𝐻
 

  𝐽34 =
𝜕𝐹3

𝜕𝐼𝐹
= 𝛾                                      𝐽44 =

𝜕𝐹4

𝜕𝐼𝐹
= −(𝜇1 + 𝛿1 + 𝛾) = −𝐴1 

𝐽54 =
𝜕𝐹5

𝜕𝐼𝐹
= 0                              𝐽64 =

𝜕𝐹6

𝜕𝐼𝐹
= 0 

 

𝐽15 =
𝜕𝐹1

𝜕𝐷𝑉
= 0                             𝐽25 =

𝜕𝐹2

𝜕𝐷𝑉
= 0              𝐽35 =

𝜕𝐹3

𝜕𝐷𝑉
= 0 

𝐽45 =
𝜕𝐹4

𝜕𝐷𝑉
= 0                            𝐽55 =

𝜕𝐹5

𝜕𝐷𝑉
= −(𝜎 + 𝜇2 + 𝛿2) = −𝐴2           𝐽65 =

𝜕𝐹6

𝜕𝐷𝑉
= 𝜎 

 

𝐽16 =
𝜕𝐹1

𝜕𝐴𝑉
=

−𝛼3𝑆𝑀

𝑁𝐻
=

−𝛼3𝑋

𝑁𝐻
              𝐽26 =

𝜕𝐹2

𝜕𝐴𝑉
=

𝛼3𝑆𝑀

𝑁𝐻
=

𝛼3𝑋

𝑁𝐻
 

𝐽36 =
𝜕𝐹3

𝜕𝐴𝑉
=

−𝛼4𝑆𝐹

𝑁𝐻
=

−𝛼4𝑍

𝑁𝐻
          𝐽46 =

𝜕𝐹4

𝜕𝐴𝑉
=

𝛼4𝑆𝐹

𝑁𝐻
=

𝛼4𝑍

𝑁𝐻
             𝐽56 =

𝜕𝐹5

𝜕𝐴𝑉
= 0 

𝐽66  = 
𝜕𝐹6

𝜕𝐴𝑉
 = −(𝜇2 + 𝛿2) 

Where (𝑋, Y, 𝑍, 𝑈, 𝑉,𝑊) = (𝑆𝑀 , 𝐼𝑀 , 𝑆𝐹 , 𝐼𝐹 , 𝐷𝑉 , 𝐴𝑉) 

𝑝 = 𝐶2𝛼1(1 − 𝜀𝜏)              𝑞 = 𝐶1𝛼2(1 − 𝜀𝜏) 

𝐴1 = (𝜇1 + 𝛿1 + 𝛾)           𝐴2 = (𝜎 + 𝜇2 + 𝛿2) 
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At the DFE, the Jacobian matrix is; 

𝐽𝐸0 =

[
 
 
 
 
 
 
 
 −𝜇1 𝛾 0 −

𝑝𝑥

𝑁𝐻
0 −

𝛼3𝑥

𝑁𝐻

0 −𝐴1 0
𝑝𝑥

𝑁𝐻
0

𝛼3𝑥

𝑁𝐻

0 −
𝑞𝑧

𝑁𝐻
−𝜇1 𝛾 0 −

𝛼4𝑧

𝑁𝐻

0
𝑞𝑧

𝑁𝐻
0 −𝐴1 0

𝛼4𝑧

𝑁𝐻

0 0 0 0 −𝐴2 0
0 0 0 0 𝜎 −(𝜇2 + 𝛿2)]

 
 
 
 
 
 
 
 

                                          (3.33) 

We transform (3.33) represented above to an upper triangular matrix using elementary row reduction method to have 

𝑅3 → 𝑅3 + 𝑅4 =

[
 
 
 
 
 
 
 
 −𝜇1 𝛾 0 −

𝑝𝑥

𝑁𝐻
0 −

𝛼3𝑥

𝑁𝐻

0 −𝐴1 0
𝑝𝑥

𝑁𝐻
0

𝛼3𝑥

𝑁𝐻

0 −
𝑞𝑧

𝑁𝐻
−𝜇1 𝛾 0 −

𝛼4𝑧

𝑁𝐻

0
𝑞𝑧

𝑁𝐻
0 −𝐴1 0

𝛼4𝑧

𝑁𝐻

0 0 0 0 −𝐴2 0
0 0 0 0 𝜎 −(𝜇2 + 𝛿2)]

 
 
 
 
 
 
 
 

                          (3.34) 

𝑅4 → 𝐴1𝑅4 +
𝑞𝑧

𝑁𝐻
𝑅2 =

[
 
 
 
 
 
 
 −𝜇1 𝛾 0 −

𝑝𝑥

𝑁𝐻
0 −

𝛼3𝑥

𝑁𝐻

0 −𝐴1 0
𝑝𝑥

𝑁𝐻
0

𝛼3𝑥

𝑁𝐻

0 0 −𝜇1 𝛾 − 𝐴1 0 0

0
𝑞𝑧

𝑁𝐻
0 −𝐴1 0

𝛼4𝑧

𝑁𝐻

0 0 0 0 −𝐴2 0
0 0 0 0 𝜎 −(𝜇2 + 𝛿2)]

 
 
 
 
 
 
 

                (3.35) 

𝑅4 →
1

𝐴1
𝑅4 =

[
 
 
 
 
 
 
 −𝜇1 𝛾 0 −

𝑝𝑥

𝑁𝐻
0 −

𝛼3𝑥

𝑁𝐻

0 −𝐴1 0
𝑝𝑥

𝑁𝐻
0

𝛼3𝑥

𝑁𝐻

0 0 −𝜇1 𝛾 − 𝐴1 0 0

0 0 0 −𝐴1
2 +

𝑞𝑧𝑝𝑥

(𝑁𝐻)
2 0

𝐴1𝛼4𝑧

𝑁𝐻
+

𝑞𝑧𝛼3𝑥

(𝑁𝐻)
2

0 0 0 0 −𝐴2 0
0 0 0 0 𝜎 −(𝜇2 + 𝛿2) ]

 
 
 
 
 
 
 

                  (3.36) 

𝑅6 → 𝐴2𝑅6 + 𝜎𝑅5 =

[
 
 
 
 
 
 
 −𝜇1 𝛾 0 −

𝑝𝑥

𝑁𝐻
0 −

𝛼3𝑥

𝑁𝐻

0 −𝐴1 0
𝑝𝑥

𝑁𝐻
0

𝛼3𝑥

𝑁𝐻

0 0 −𝜇1 𝛾 − 𝐴1 0 0

0 0 0 −𝐴1 +
𝑞𝑧𝑝𝑥

𝐴1(𝑁𝐻)
2 0

𝛼4𝑧

𝑁𝐻
+

𝑞𝑧𝛼3𝑥

𝐴1(𝑁𝐻)
2

0 0 0 0 −𝐴2 0
0 0 0 0 𝜎 −(𝜇2 + 𝛿2) ]

 
 
 
 
 
 
 

                (3.37) 

[
 
 
 
 
 
 
 −𝜇1 𝛾 0 −

𝑝𝑥

𝑁𝐻
0 −

𝛼3𝑥

𝑁𝐻

0 −𝐴1 0
𝑝𝑥

𝑁𝐻
0

𝛼3𝑥

𝑁𝐻

0 0 −𝜇1 𝛾 − 𝐴1 0 0

0 0 0 −𝐴1 +
𝑞𝑧𝑝𝑥

𝐴1(𝑁𝐻)
2 0

𝛼4𝑧

𝑁𝐻
+

𝑞𝑧𝛼3𝑥

𝐴1(𝑁𝐻)
2

0 0 0 0 −𝐴2 0
0 0 0 0 0 −𝐴2(𝜇2 + 𝛿2)]

 
 
 
 
 
 
 

                                          (3.38) 

Thus the characteristics equation of the upper triangular matrix (3.38) is given by |𝐽𝐸0 − 𝜆𝐼| 

𝐽𝐸0 =

[
 
 
 
 
 
 
 
 −(𝜇1 + 𝜆1) 𝛾 0 −

𝑝𝑥

𝑁𝐻
0 −

𝛼3𝑥

𝑁𝐻

0 −(𝐴1 + 𝜆2) 0
𝑝𝑥

𝑁𝐻
0

𝛼3𝑥

𝑁𝐻
0 0 −(𝜇1 + 𝜆3) 𝛾 − 𝐴1 0 0

0 0 0 −(𝐴1 − 𝐴3 + 𝜆4) 0 𝐴4
0 0 0 0 −(𝐴2 + 𝜆5) 0

0 0 0 0 0 −𝐴2(𝜇2 + 𝛿2) − 𝜆6]
 
 
 
 
 
 
 
 

 

(3.39) 
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Equating the product of diagonal of an upper triangular Jacobian matrix to zero (0) gives the eigenvalues of the matrix. Therefore 

the eigenvalues are 

−(𝜇1 + 𝜆1) = 0                     −(𝐴1 + 𝜆2) = 0                        −(𝜇1 + 𝜆3) = 0 

⇒ −𝜇1 − 𝜆1 = 0                     −𝐴1 − 𝜆2 = 0                         −𝜇1 − 𝜆3 = 0 

⇒ 𝜆1 = −𝜇1                             ⇒ 𝜆2 = −𝐴1                              ⇒ 𝜆3 = −𝜇1 

−(𝐴1 − 𝐴3 + 𝜆4) = 0             −(𝐴2 + 𝜆5) = 0                      – 𝐴2(𝜇2 + 𝛿2) − 𝜆6 = 0 

−(𝐴1 − 𝐴3) − 𝜆4 = 0             −𝐴2 − 𝜆5 = 0                         −𝐴2(𝜇2 + 𝛿2) = 𝜆6 

⇒ 𝜆4 = −(𝐴1 − 𝐴3)                  ⇒ 𝜆5 = −𝐴2                             ⇒ 𝜆6 = −𝐴2(𝜇2 + 𝛿2) 

Where identity matrix (I) is 

𝐼 =

{
 
 

 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1}

 
 

 
 

 

Thus; 

|𝜆𝐼| =

{
 
 

 
 
𝜆1 0 0 0 0 0
0 𝜆2 0 0 0 0
0 0 𝜆3 0 0 0
0 0 0 𝜆4 0 0
0 0 0 0 𝜆5 0
0 0 0 0 0 𝜆6}

 
 

 
 

 

 

𝐴1 = (𝜇1 + 𝛿1 + 𝛾)                  𝐴2 = (𝜎 + 𝜇2 + 𝛿2) 

𝐴3 =
𝑞𝑍𝑝𝑋

𝐴1(𝑁𝐻)
2                                 𝐴4 =

𝐴1𝛼4𝑍

𝑁𝐻
+

𝑞𝑍𝛼3𝑋

(𝑁𝐻)
2  

Hence 

𝜆1 = −𝜇1             𝜆2 = −(𝜇1 + 𝛿1 + 𝛾)            𝜆3 = −𝜇1 

𝜆4 = − [(𝜇1 + 𝛿1 + 𝛾) −
𝑞𝑍𝑝𝑋

(𝜇1 + 𝛿1 + 𝛾)(𝑁𝐻)
2
]                       𝜆5 = −(𝜎 + 𝜇2 + 𝛿2) 

𝜆6 = −(𝜎 + 𝜇2 + 𝛿2)(𝜇2 + 𝛿2) 

For stability of disease‐free equilibrium Routh‐Hurwitz criteria requires that all eigenvalues have negative real part. Since all the 

eigenvalues of (3.39) have negative real parts i.e. 𝜆𝑖 < 0 for  

i = 1,2,3, . . . , 6 implies that the disease free equilibrium is stable. Thus the disease dies out in the long run and cannot invade 

the population. 

If 𝑅𝑒(𝜆) > 0, the disease free equilibrium is unstable i.e. invasion is always possible and the infection will be able to spread in the 

population. 

An endemic disease is a disease that is always present in a certain population or region. In DFE, we solve to know if the disease 

cannot invade a population or can but DEE, we already know that the disease have invaded the population and it is persistence. 

Once the disease invades the population, it becomes endemic. 

 

CONCLUSION 

The study analysed the spread and control and control of Lassa fever. Lassa fever is an acute viral haemorrhagic illness caused by 

Lassa virus. Noting that humans usually become infected with Lassa virus through exposure to food or household items 

contaminated with urine or feaces of infected Mastomys rats. 

The stability analysis for disease free equilibrium of our model showed that the disease dies out in the long run and cannot invade 

the population. 
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