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ABSTRACT: This study used the Daftardar-Jafari approach to find the approximate and analytical solution for the Fokker-Planck (F-

P) equation with the operator Caputo-Fabrizio (DJM). The accuracy, efficiency, and simplicity of the current technique are 

excellent. 
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1. INTRODUCTION 

Numerous theoretical and practical sciences, such as theoretical biology and ecology, solid-state mechanics, viscosity, optical 

fibers, data analysis, electrical control theory, stochastic economics, hydrodynamics, and dynamics, among others, significantly 

rely on the computation and analysis of nonlinear partial differential equation solutions. This process has been going on for at 

least half a century [1–3]. Numerous analytical and numerical techniques have been used recently to try and solve fractional 

differential equations (FDEs). Since most fractional differential equations lack exact solutions, approximating and numerical 

techniques are utilized to solve the FDEs. [4,5]. In this work, we use DJM to solve Fokker-Planck equation that include the fractional 

operator of the Caputo-Fabrizio type. One of the fundamental equations in the study of stochastic processes, like the Markov 

process, has been the Fokker-Planck (F-P) equation [6]. The transition probability density function 𝜓(𝜇, ɽ) is described by and is 

represented by this parabolic differential equation. 

            
∂𝜓

∂ɽ
= −

∂

∂𝜇
{𝐴(𝜇)𝜓} +

1

2

∂2

∂𝜇2 {𝐵(𝜇)𝜓},                                                (1) 

 

Where coefficient A is known as the drifting term and coefficient B ≥ 0 is known as the fluctuation factor. 

In this study, the DJ method was applied to the Fractional-order Fokker-Planck equation, where the general form of this equation 

is [7], 

∂𝜆𝜓

∂ɽ𝜆 =
1

2

∂2

∂𝜇2
{𝐵(𝜇)𝜓} −

∂

∂𝜇
{𝐴(𝜇)𝜓}, 0 < 𝜆 < 1, 𝜇 ∈ 𝑅, ɽ > 0.                    (2) 

 

2. PRELIMINARIES OF FRACTIONAL CALCULUS 

DEFINITION 1 [8–11]. let 𝜓 ∈ 𝐻1(𝜚, 𝜎), 𝜚 > 𝜎, 𝜚 ∈ (−∞, ɽ),0 < 𝜆 < 1 , then, the definition of the Caputo-Fabrizio fractional 

derivative is  

𝜚
ϾϜ𝐷ɽ

𝜆𝜓(ɽ) =
𝛽(𝜆)

(1−𝜆)
∫  

ɽ

𝜚
𝜓′(𝑠) exp (−

𝜆

1−𝜆
(ɽ − 𝑠)) 𝑑𝑠 (3) 

Where 𝛽(𝜆) is a normalizing function that satisfies 𝛽(0) = 𝛽(1) = 1. 

The operator's fundamental characteristics are as follows: 

1  ϾϜ𝐷ɽ
𝜆𝜓(ɽ) = 𝜓(ɽ), where 𝜆 = 0. 

2  ϾϜ𝐷ɽ
𝜆[𝜓(ɽ) + 𝜙(ɽ)] =  ϾϜ𝐷ɽ

𝜆𝜓(ɽ) +  ϾϜ𝐷ɽ
𝜆𝜙(ɽ). 

3  ϾϜ𝐷ɽ
𝜆(𝑐) = 0, where c is constant. 
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DEFINITION 2 [5, 12, 13]. let 𝜓 ∈ 𝐻1(𝜚, 𝜎), 𝜚 > 𝜎, 𝜚 ∈ (−∞, ɽ),0 < 𝜆 < 1, then, the fractional integral of order α of a function u 

is defined by 

𝐼ɽ
𝜆

𝜚
ϾϜ 𝜓(ɽ) =

1−𝜆

𝛽(𝜆)
𝜓(ɽ) +

𝜆

𝛽(𝜆)
∫  

ɽ

𝜚
𝜓(𝑠)𝑑𝑠, (4) 

Where 𝛽(𝜆) is a normalizing function that satisfies 𝛽(0) = 𝛽(1) = 1. 

1 The operator's fundamental characteristics are as follows: 

2  ϾϜ𝐼ɽ
𝜆𝜓(ɽ) = 𝜓(ɽ), where 𝜆 = 0. 

3  ϾϜ𝐼ɽ
𝜆[𝜓(ɽ) + 𝜙(ɽ)] =  ϾϜ𝐼ɽ

𝜆𝜓(ɽ) +  ϾϜ𝐼ɽ
𝜆𝜙(ɽ) 

4  ϾϜ𝐼ɽ
𝜆[ ϾϜ𝐷ɽ

𝜆𝜓(ɽ)] = 𝜓(ɽ) − 𝜓(0) 

 

3. THE TECHNIQUE ANALYSIS 

Let's suppose that Eq.(2) with  𝜓(𝜇, 0) = 𝜓0(𝜇). The typical format of Eq.(2) in Caputo-Fabrizio sense is 

 ϾϜ𝐷ɽ
𝜆𝜓 =

1

2

∂2

∂𝜇2 {𝐵(𝜇)𝜓} −
∂

∂𝜇
{𝐴(𝜇)𝜓}                                                   (5) 

with initial conditions 

𝜓(𝜇, 0) = 𝜓0(𝜇) 

where  ϾϜ𝐷ɽ
𝜆𝜓(𝜇, ɽ) is Caputo-Fabrizio operator of  𝜓(𝜇, ɽ),0 < 𝜆 ≤ 1. 

 

The result below is obtained by applying the Caput-Fabrizio integral to both sides of Eq.(5). 

 ϾϜ𝐼ɽ
𝜆[ ϾϜ𝐷ɽ

𝜆𝜓(𝜇, ɽ)] =  ϾϜ𝐼ɽ
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∂𝜇2 {𝐵(𝜇)𝜓}] −  ϾϜ𝐼ɽ
𝜆 [

∂

∂𝜇
{𝐴(𝜇)𝜓}],                  (6) 

then, we obtain 

𝜓(𝜇, ɽ) = 𝜓(𝜇, 0) +  ϾϜ𝐼ɽ
𝜆 [

1

2

∂2

∂𝜇2
{𝐵(𝜇)𝜓}] −  ϾϜ𝐼ɽ

𝜆 [
∂

∂𝜇
{𝐴(𝜇)𝜓}].                      (7) 

We are trying to find a series-formable solution to Eq.(7), 

𝜓(𝜇, ɽ) = ∑  ∞
𝑛=0 𝜓𝑛(𝜇, ɽ),                                                                (8) 

When Eq.(7) is changed to reflect the decomposition series Eq.(8), it produces 

∑  ∞
𝑛=0 𝜓𝑛(𝜇, ɽ) = 𝜓0(𝜇) +  ϾϜ𝐼ɽ

𝜆 [
1

2

∂2

∂𝜇2
{𝐵(𝜇)(∑  ∞

𝑛=0  𝜓𝑛)}] −  ϾϜ𝐼ɽ
𝜆 [

∂

∂𝜇
{𝐴(𝜇)(∑  ∞

𝑛=0  𝜓𝑛)}].      (9) 

Additionally, recurrence is used to describe the relationship so that 

𝜓0(𝜇, ɽ) = 𝜓0(𝜇),

𝜓𝑛+1(𝜇, ɽ) =  ϾϜ𝐼ɽ
𝜆 [

1

2

∂2

∂𝜇2
{𝐵(𝜇)(𝜓𝑛)}] −  ϾϜ𝐼ɽ

𝜆 [
∂

∂𝜇
{𝐴(𝜇)(𝜓𝑛)}] .                (10)

 

The approximate k-term solution of Eq. (5) is thus provided by: 

𝜓(𝜇, ɽ) = 𝜓0(𝜇, ɽ) + 𝜓1(𝜇, ɽ) + 𝜓2(𝜇, ɽ) + 𝜓3(𝜇, ɽ) + ⋯.                               (11) 

 

4. APPLICATION 

Take into account the time fractional F-P equation of order with 𝜓(𝜇, 0) = 𝜇. We choose the constant fluctuation term 𝐵(𝜇) =

2𝑘 and the drift term 𝐴(𝜇) = 𝜇 for simplicity. Using the relationship Eq.(10), we immediately  

𝜓0  = 𝜇,

𝜓1  =  ϾϜ𝐼ɽ
𝜆 [

1

2

∂2

∂𝜇2
{2𝑘𝜓0}] −  ϾϜ𝐼ɽ

𝜆 [
∂

∂𝜇
{−𝜇𝜓0}]

 = 2𝜇(1 − 𝜆 + 𝜆ɽ),

𝜓2  =  ϾϜ𝐼ɽ
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2

∂2

∂𝜇2
{2𝑘𝜓1}] −  ϾϜ𝐼ɽ

𝜆 [
∂

∂𝜇
{−𝜇𝜓1}]

 = 4𝜇 [(1 − 2𝜆 + 𝜆2) + (2𝜆 − 2𝜆2)ɽ +
1

2
𝜆2ɽ2] ,

𝜓3 =  ϾϜ𝐼ɽ
𝜆 [

1
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∂2

∂𝜇2
{2𝑘𝜓2}] −  ϾϜ𝐼ɽ

𝜆 [
∂

∂𝜇
{−𝜇𝜓2}]

= 8𝜇 [(1 − 3𝜆 + 3𝜆2 − 𝜆3) + (1 − 3𝜆2 + 2𝜆3)ɽ + (𝜆 −
1

2
𝜆2 −

1

2
𝜆3) ɽ3 +

1

6
𝜆2ɽ3].    (12)
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Now, the approximate solution of Eq.(5) is 

𝜓(𝜇, ɽ) = 𝜇 + 2𝜇(1 − 𝜆 + 𝜆ɽ) + 4𝜇 [
(1 − 2𝜆 + 𝜆2)

+(2𝜆 − 2𝜆2)ɽ +
1

2
𝜆2ɽ2

]

 +8𝜇 [

(1 − 3𝜆 + 3𝜆2 − 𝜆3) + (1 − 3𝜆2 + 2𝜆3)ɽ

+ (𝜆 −
1

2
𝜆2 −

1

2
𝜆3) ɽ3 +

1

6
𝜆2ɽ3

] + ⋯.                                            (13)

 

 

The Eq.(13) provides a rough solution to the form., 

𝜓(𝜇, ɽ) = 𝜇𝑒2ɽ, 

for 𝜆 = 1, which is the exact solution of Eq. (5) at 𝜆 = 1. 

 

5. CONCLUSIONS 

This method, which has demonstrated its effectiveness in solving these kinds of equations, is one of the most significant and 

current strategies for solving linear and nonlinear differential equations. We made a significant discovery in this study, the idea is 

those differential equations utilizing the Caputo-Fabrizio fractional operator may be effectively solved using this method. We 

solved the Fokker-Planck equation, one of the most important physics equations.. 
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